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INTRODUCTION

Biometric recognition refers to using the inherent physiological or behavioral characteristics of the hu-
man body to perform personal identification. In general, physiological characteristics include palmprint, 
palm vein, palm dorsal vein, fingerprint, face, iris, retina, ear, knuckle print, lip print, voice print, etc., 
while behavioral characteristics include gait, signature, keyboard typing, and so on. With decades of 
development, biometric recognition has been widely used in everyday life.

Palmprint recognition is a member of the biometric recognition family. It is a technology that uses 
the unique features of the palm surface for biometric identification. As shown in Figure 1, the palm 
contains a wealth of features such as palm shape, principal lines, wrinkles, ridges, minutiae, textures, 
subcutaneous palm vein, and three-dimensional (3-D) surface curvatures.

Advantages of Palmprint Recognition

Among biometric recognition methods, face recognition has problems in situations, such as covering 
with a mask or goggles, and similar faces between identical twins; fingerprint recognition has issues of 
counterfeits, wet/dry fingers, and workers and elders who cannot offer clear fingerprints because of years 
of manual labor or problematic skins. Compared with these recognition methods, palmprint recognition 
has the advantages of high accuracy, high anti-counterfeiting capability, low privacy sensitivity, and 
low risk of germ transmission when considering public health, especially during the global COVID-19 
pandemic. The prominent palmprint recognition with varieties of advantages has attracted a wide range 
of attention from academia and industry in recent years (Fei et al., 2018; Zhong et al., 2019).
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Categories of Palmprint Recognition

According to different criteria, palmprint recognition can be divided into different categories. Consider-
ing the palmprint image dimensions, it can be divided into two-dimensional (2-D) and 3-D palmprint 
recognition. When taking image resolution as a criterion, it can be divided into high-resolution and 
low-resolution categories (Zhang & Shu, 1999). According to whether the hand touches the capture 
device or not, it can be divided into touch-based and touchless palmprint recognition (TLPR). Along 
with the practical requirements, TLPR is more convenient and flexible. With more attention being paid 
to it, numerous kinds of TLPR systems have been proposed (Genovese et al., 2014; Zhang et al., 2017; 
Liang, Guo et al., 2021; Liang, Lu et al., 2022) and it has become the cutting-edge subject of palmprint 
recognition.

Application Scenarios

Due to the attractive advantages, low-resolution palmprint recognition is expected to have a wide 
range of practical applications. For instance, in the medical field, TLPR can avoid secondary pollution 
when identifying doctors and patients; In the traffic control field, TLPR can be applied in scenarios 
such as personal identification for intelligent turnstiles; In the field of finance with high secrecy and 
security demands, the effective anti-counterfeiting characteristics of TLPR can significantly improve 
the security of personnel authorization. Furthermore, in law enforcement agencies, TLPR can provide 
secure verification of personnel in scenes such as weapons and ammunition management. In contrast, 
high-resolution palmprint recognition is of much prospect in forensic applications, where partial-to-full 
matching is performed. For example, the latent palmprint obtained from knife hilts, gun grips, steering 
wheels, or glass surfaces from the crime scene, can be used to match against a registered database of full 
palmprints. However, due to complex backgrounds, small overlap regions, and a large number of detail 
features (e.g., creases and minutiae), latent palmprint matching is more challenging than the full-to-full 
template matching used in low-resolution palmprint recognition (Jain & Feng, 2008).

Figure 1. Sample images of the palmprint and its features
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Organization of This Chapter

The most challenging issues of TLPR are lacking of large-scale dataset, and the imperfect palm postures 
and low-quality imaging caused by unconstrained acquisition modes and complex ambient lighting 
conditions. For the TLPR research, there is a strong requirement of unconstrained large-scale palm-
print datasets. However, existing publicly available palmprint datasets, such as PolyU (The Hong Kong 
Polytechnic University [PolyU], 2009), Tongji (Zhang et al., 2017), and IITD (IIT Delhi, 2008), are 
all small-scale; thus, they are insufficient to demonstrate the generalization performance of the TLPR 
methods. To address the issues mentioned above, this chapter introduces a new multi-biometric database 
named “CUHKSZ” and then conducts a series of experiments on it to evaluate the TLPR performances 
for future reference.

The whole structure of this chapter is as follows. In section 2, the background of TLPR including 
issues and challenges are explored. Section 3 describes the newly established CUHKSZ dataset and 
introduces the classic palmprint recognition method CompCode (Kong & Zhang, 2004). In section 4, a 
series of experiments on the CUHKSZ dataset are performed to explore the optimal solutions and rec-
ommendations for TLPR. Section 5 highlights the future research directions of palmprint recognition. 
Finally, section 6 concludes this chapter.

BACKGROUND

A typical TLPR system consists of two components: image sensing and identity recognition. In detail, 
the recognition method includes palm region segmentation, keypoint detection, region of interest (ROI) 
localization, feature encoding, feature matching, and decision (Kong et al., 2009). According to the 
above components, the challenges in TLPR can be divided into two categories: image sensing-related 
and recognition method-related.

Issues and Challenges in Image Sensing

For TLPR, the whole palm region should be captured in image sensing. As a result, the target region is 
larger than the fingerprints and the palmprint feature scale is smaller than faces. Therefore, at the same 
camera resolution, it makes the pixel per inch (PPI) of the palmprint be more difficult to guarantee 
compared with fingerprint and face acquisitions, which gives rise to the problem that the palmprint 
features such as ridges and minutiae are often lost in the sensing process. Moreover, the face acquisition 
distance is above 30 cm, while the palm is around 10 cm to 20 cm from the device. Thus, motion blur 
and drastic changes in brightness occur more frequently in the process of palmprint imaging compared 
with that of face acquisition with a longer distance.

In general, palmprint sensing issues can be summarized into the following categories: (1) illumination 
problems such as over-bright, over-dark, or uneven lighting; (2) blur problems caused by defocusing, hand 
motion, or insufficient PPI; (3) geometric deformation problems such as perspective distortions caused 
by palm tilt, and radial or tangential distortions caused by camera lens; (4) information loss caused by 
palm stains, skin damage, or high image compression rate; (5) false information such as pseudo-edges 
caused by uneven illumination or palm distortion. The above factors will lead to difficulties in high-
quality palmprint image sensing.
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Accordingly, palmprint imaging has challenges in the following two aspects:

Optimum Design of Sensing Device. The palmprint sensing device should acquire a fine-grained 
palmprint pattern. To meet this requirement, the image resolution of the sensing device should be en-
sured to be high. In addition, due to the short acquisition distance, the movement of the palm will cause 
significant fluctuations in image brightness and sharpness, which brings great challenges to the general 
3A (i.e., automatic exposure, automatic white balance, and automatic focus adjustment) methods of the 
camera’s image signal processor (ISP). Thus, a powerful sensing device with the ability to automatically 
adjust its parameters to overcome these problems and generate high-quality images is highly expected.

Palmprint Image Quality Assessment (IQA). Palmprint image quality assessment is an essential 
basis for palmprint recognition. It refers to the quantitative evaluation of image quality based on the 
characteristics of palmprint, such as brightness, sharpness, and illumination uniformity. In the process 
of palmprint acquisition, focus and illumination problems may occur due to a variety of palm postural 
changes, resulting in a loss of palmprint feature information. To overcome this problem, on the one hand, 
the palmprint IQA result should be fed back into the device to improve the quality and stability of its 
imaging. On the other hand, by providing the assessment result to the recognition algorithm, dynamic 
adjustments of the algorithm parameters or decision schemes can be realized to improve the final accuracy.

Issues and Challenges in Recognition Method

For TLPR, the palm images are acquired in unconstrained environments, leading to sensing problems 
such as palm pose variations (e.g., palm twist, tilt, finger closure, and spatial position change) and low-
quality imaging (abnormal illumination and image blur). These issues make it be a challenging work for 
recognition algorithms to deal with intra-class variations and inter-class similarity.

For intra-class variation, above sensing problems make the ROI images from the same palm no longer 
be similar enough and will lead to misalignments of the ROI localizations. Thus, it may cause failures 
of global feature template matching or obtaining too few keypoint matches between ROI images. As a 
result, the issues increase the system’s false rejection rate (FRR) between intra-class samples and thus 
seriously reduce the user experience.

For inter-class similarity, above sensing problems lead to the loss of palmprint detailed features, 
which will cause mismatching of principal lines or local texture features between inter-class samples, 
increasing the false acceptance rate (FAR) of the system. This highly affects recognition accuracy and 
system security.

Based on the above analysis, the challenges in the recognition method are in the following two aspects:

ROI Localization and Alignment. Compared with touch-based palmprint images, touchless palm-
print images have more complex backgrounds. Accordingly, palm region segmentation is a critical step 
in TLPR. The segmentation quality directly affects the precision of the subsequent palm edge detection 
and ROI localization results. ROI localization is the prerequisite for palmprint recognition; the localiza-
tion precision directly affects the distribution consistency of intra-class features (Liang et al., 2023). As 
a result, the location error will increase the system FRR, reduce the pass rate of the registered users, and 
seriously affect the user experience. Most palmprint ROI localization methods rely on keypoint detection; 
however, palm edges become not obvious in complex environments, and the hand pose also has a high 
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degree of freedom. These factors make the conventional keypoint detection algorithm unstable in touchless 
scenarios. Therefore, high precision and robust palm keypoint localization have become a severe chal-
lenge in TLPR. In addition, due to the complexity of practical application scenarios, multimodal-based 
fusion recognition (e.g., palmprint and palm vein) has become an inevitable choice to achieve robust 
segmentation and high anti-spoofing ability. However, due to the differences in positions and poses of 
the multi-view cameras, the palm regions in multimodal images are not aligned, and the nonlinear offset 
is related to the spatial position (x, y, z) of the palm. Therefore, how to align the ROIs in multimodal 
palmprint images is an urgent problem to be solved.

Robust Feature Representation and Multimodal Fusion. In TLPR, with the continually increas-
ing data size, the number of hard samples increases synchronously. The similarity between inter-class 
samples and variation between intra-class samples will continue to deteriorate. Therefore, in the recogni-
tion step, the designed feature representation algorithms should make the matching distances between 
inter-class samples significantly larger than those of the intra-class samples. TLPR uses features such 
as principal lines, wrinkles, local textures, minutiae, and palm vein for biometric recognition, so there 
is a promising way to design a reliable multi-modal feature space to efficiently fuse multi-class features 
to increase the generalization performance of feature representation.

CUHKSZ MULTI-BIOMETRIC DATASET AND THE COMPCODE SCHEME

Data is the foundation of biometrics research. As a promising dataset for cutting-edge TLPR research 
in the biometrics community, fisrt, it should be collected in unconstrained environments to simulate the 
image sensing issues exist in real-world scenarios. Second, the large-scale property is also required for 
better exploring the intra-class variation and inter-class similarity problems for recognition. Motivated 
by it, a multi-biometric dataset CUHKSZ is established with the support by Natural Science Foundation 
of China under Grant 62172347.

As one of the most widely used benchmark methods for palmprint recognition, CompCode (Kong 
& Zhang, 2004) will be introduced as a representative method to test recognition performances on the 
CUHKSZ dataset.

CUHKSZ Multi-Biometric Dataset

CUHKSZ is a subject-aligned large-scale multi-biometric database comprising 10,000 subjects with 
their palmprint, face, and fingerprint biometrics images. Typical images of each biometric modal are 
shown in Figure 2. Because the topic of this chapter mainly focuses on TLPR, the CUHKSZ palmprint 
dataset is introduced in more detail.

As is shown in Figure 3, the CUHKSZ palm images were collected by a touchless bimodal sensing 
device comprising dual-band light sources, a binocular CMOS camera module with dual-band filters, 
and a TOF ranging sensor (Liang, Lu et al., 2022). The TOF ranging sensor can show the height of the 
palm from the device in real-time. Considering that the height of the palm to the device varies during 
the acquisition process, subjects were guided to put their palms in two different distance ranges (8-10 cm 
and 10-12 cm) from the device. For each distance range, three of each palmprint and palm vein image 
are captured simultaneously. In summary, this dataset provides six palmprint images and six palm vein 
images for each palm with 10,000 subjects, and the image resolution is 640×480.
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Figure 2. Typical images of each biometric modal in the CUHKSZ subject-aligned large-scale multi-
biometric dataset. From top row to bottom row, they are touchless palmprint images, touchless palm vein 
images, fingerprint images, and face images. Note that, for the sake of personal information safety, the 
modal images shown above are selected from different individuals; in addition, the faces are blurred out.

Figure 3. The CUHKSZ touchless palmprint and palm vein acquisition system



T

﻿

7

A brief comparison between the newly established CUHKSZ bimodal touchless palmprint dataset 
and the most used publicly available palmprint datasets is listed in Table 1. The statistics show that the 
CUHKSZ is the largest one among the existing palmprint datasets, with a difference of two orders of 
magnitude in scale.

Competitive Code

The most significant feature of palmprint is the orientations of the line patterns. Thus, most palmprint 
recognition algorithms (Kong & Zhang, 2002; Jia et al., 2012; Liang, Yang et al., 2021; Jia et al., 2017) 
attempt to extract and encode the orientation information of palmprint patches. Among them, CompCode 
(Kong & Zhang, 2004) is the most classic one. It uses directional Gabor filters to extract line responses 
of a palmprint local region along different directions via convolution. And then encode the index of the 
direction in which the convolution obtained the maximum response. The 2D Gabor function used in 
this method is as follows:
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where x x x y y' ( ) cos ( )sin� � � �0 0� � , y x x y y' ( ) sin ( ) cos� � � � �0 0� � . Note that only the 
real part is utilized to extract line patterns. Here, (x0, y0) is the function center and 𝜃 is the orientation of
this Gabor function (in unit of radians). In addition, 𝜔 is the radial frequency (in unit of radians per

Table 1. Comparison between the existing touch-based and touchless palmprint datasets

Datasets Modala Sensing 
Modeb

No. of 
Hands

No. of 
Images No. of Sessions

PolyU (PolyU, 2003) PP T 386 7,752 2

PolyU-MS (PolyU, 2009) MS T 500 24,000 2

CASIA (Chinese Academy of Sciences, 2005) PP TL 624 5,502 1

CASIA-MS (Chinese Academy of Sciences, 2007) MS TL 200 7,200 2

COEP (COEP Technological University, 2010) PP TL 163 1,305 1

FCPD (Liang, Guo et al., 2021) PP, PV, D TL 210 10,470 1

GPDS (University of Las Palmas de Gran Canaria, 
2011) PP, PV TL 100 2,000 1

IITD v1.0 (IIT Delhi, 2008) PP TL 460 2,601 1

KTU Contactless (KTU CVPR Lab., 2015) PP TL 145 1,752 1

REST (Charfi et al., 2021) PP TL 358 1,948 1

Tongji (Zhang et al., 2017; Zhang et al., 2018) PP, PV TL 600 12,000 2

11K Hands (Afifi, 2019) PP TL 380 11,076 1

CUHKSZ PP, PV TL 20,000 120,000 1
a: PP represents palmprint, PV represents palm vein, MS represents multispectral palmprint images, and D represents depth information 

of the palm surface.
b: T as touch-based sensing mode, while TL as touchless sensing mode.
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length) and 𝛿 is the half-amplitude bandwidth of the frequency response. Then, 𝜅 and 𝜔  can be obtained
by:

�
�

��
�
�

2 2
2 1

2 1
ln ( )  (2)

and 𝜔 =𝜅 /𝜎 respectively.
In CompCode, six orientations are used to construct a Gabor filter bank, i.e., 𝜃 i= i𝜋/6, i∈{0,1,…,5}, 

where 𝜃 i is the orientation angle of the i-th Gabor filter. Then, six responses can be obtained after con-
voluting the ROI image by each directional filter in the Gabor filter bank, respectively. The competitive 
coding scheme is defined as follows:

i I x y x y� �argmax{ ( , ) ( , , )}
�

� �  (3)

where I is the palmprint image, (x,y) is the pixel coordinate, 𝜓 is the 2D Gabor filter obtained using
Equation (1), 𝜃 is the orientation angle of 𝜓 , and * denotes the convolution operator. Here, i∈[0,5] de-
notes the orientation index in which the convolution response reaches the maximum, i.e., the winning 
index. Using a sliding window to filter the given palmprint ROI image with a fixed stride, the winning 
orientation index of each image patch (centered at the sample point) can be obtained. Finally, the win-
ning indices will be utilized to construct the 2D feature template.

In the matching phase, the distance between two palmprint feature templates is measured by the 
average of the summation of the angular distances between two corresponding winning indices. In ad-
dition, the angular distance of two indices is defined in Table 2. To speed up the distance calculation 
process, the winning index i is represented by 3 bits (see Table 3). Combining Table 2 and Table 3, we 
can see that the well-designed bit representations make it possible to calculate the angular distance by 
performing XOR operations on the two 3-bit winning indices. Since on the CPU, the XOR instructions 
performed much faster than the arithmetic instructions, this coding scheme can significantly improve 
the speed of feature matching.

Table 2. All possible angular distances (𝛼) between
winning indices i1 and i2

       i1
i2

0 1 2 3 4 5

0 0 1 2 3 2 1

1 1 0 1 2 3 2

2 2 1 0 1 2 3

3 3 2 1 0 1 2

4 2 3 2 1 0 1

5 1 2 3 2 1 0

Table 3. Bitwise representation of the Competi-
tive Code

Winning index Bit 1 Bit 2 Bit 3

0 0 0 0

1 0 0 1

2 0 1 1

3 1 1 1

4 1 1 0

5 1 0 0
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The key hyper-parameters in the feature encoding phase are the size of the Gabor filter, the number 
of orientations of the filter bank, and the stride of the convolution sliding window. Considering the ex-
tracted ROI still contains localization errors caused by non-rigid deformations of the palm, in the feature 
matching phase, one of the two feature templates should be shifted and rotated to search for the best 
overlap region between the two ROIs. Accordingly, the key hyper-parameters in the feature matching 
phase are the ranges of template translations and rotations.

SOLUTIONS AND RECOMMENDATIONS

In this section, solutions and recommendations of TLPR are conducted from the following three aspects:

• The parameters optimization experiment of the representative CompCode (Kong & Zhang, 2004) 
method is performed to reveal the performance-changing trend and the optimal parameters set on 
the CUHKSZ palmprint dataset.

• A comparative study of some of the most widely used TLPR methods is conducted, which dem-
onstrates the generalization capability of TLPR on large-scale datasets and provides benchmarks 
for future palmprint recognition research.

• The recognition performances of the three widely used biometrics, i.e., palmprint, face, and fin-
gerprint, are evaluated. The experimental result shows the advantages of TLPR in terms of recog-
nition accuracy, which provides a technical reference for civil applications.

Experimental Settings

Implementation. The experiments are carried out on a server with 160 Intel Xeon Gold 6230 CPUs 
and 337G RAM. All the ROI images are normalized and resized to 128×128. No data augmentation is 
leveraged in this experiment. CompCode (Kong & Zhang, 2004) is implemented by Matlab. By default, 
in the encoding stage, this chapter uses a directional Gabor filter bank with 6 orientations and the filter 
size is 35×35. In the matching stage, the translation shift pixels is set to [−3, 3] steps, and no template 
rotation is performed.

Performance Measures. The followings are standard metrics used for analyzing the accuracy and 
performance of a palmprint recognition system.

• Genuine Acceptance Rate (GAR) or True Acceptance Rate (TAR): The probability of the number 
of accepted attempts made by the genuine samples to the total number of attempts made by the 
genuine samples.

• False Acceptance Rate (FAR): The probability of the number of accepted attempts made by the 
impostor samples to the total number of attempts made by the impostor samples.

• False Rejection Rate (FRR): The probability of the number of rejected attempts made by the genu-
ine samples to the total number of attempts made by the genuine samples.

• Equal Error Rate (EER): When FAR equals FRR, the value of FAR or FRR is the EER, i.e., EER 
= FAR = FRR.

• Receiver Operating Characteristic (ROC) curve: A metric to evaluate the output quality of a bi-
nary classifier. ROC curve typically plots GAR on the Y axis, and FAR on the X axis.
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• Detection Error Tradeoff (DET) curve: DET curve typically plots FRR on the Y axis, and FAR 
on the X axis.

• Rank-1 accuracy: The probability that a sample is correctly recognized using the nearest neighbor 
classifier.

Evaluation Protocols. It is well known that there are two recognition modes for a biometric sys-
tem, i.e., identification and verification (Zhang et al., 2003). For palmprint verification, the EER can 
be obtained based on the intra-class and inter-class matching scores. For palmprint identification, after 
matching with all the classes in the enrollment set, the label of the probe palm can be predicted using 
the nearest neighbor classifier. Then, the rank-1 accuracy rate can be calculated by the mean correct rate 
of the predictions obtained from the test set.

This chapter uses EER as the main evaluation metric, because most existing palmprint recognition 
methods are designed for person verification. Considering the real applications of palmprint verifica-
tion, the matching scheme used in the works of Liang, Lu et al. (2022), Matkowski et al. (2019), and 
Genovese et al. (2019) is adopted to providw a comprehensive evaluation and comparison of different 
palmprint verification algorithms. Specifically, for each palm, the scheme takes 3 images for enrollment 
and the remaining images for testing. Thus, the matching is performed between a test image and the 3 
corresponding registered images, where the minimum distance of the three distances is used as the final 
matching score for the current category in the registration set.

CompCode Optimization

CompCode extracts the orientation information from the palm lines and stores it in the competitive code 
template based on the well-designed bit planes. Then, the average angular distance method, implemented 
by a lookup table, is developed to effectively calculate the dissimilarity score between two competitive 
code templates. CompCode has been widely used because it achieves excellent performance both in ex-
ecution speed and recognition accuracy. In addition, the feature template extracted from one ROI image 
only costs 512 bytes. However, the results of existing studies were obtained from small-scale datasets. 
Thus, it is insufficient to demonstrate their effectiveness in real-world applications.

In this section, performance evaluation and parameter optimization of CompCode are conducted on 
the newly established CUHKSZ palmprint dataset (only the palmprint modal is implemented). More 
specifically, the performance evaluation of CompCode is mainly tested by changing the values of three 
parameters: the number of Gabor filter banks (denoted k) in the feature encoding stage, and the template 
translation shift steps (denoted t) and rotation angles (denoted r) during feature matching stage.

Influence of the number of Gabor filter orientations. The number of Gabor filter banks is associ-
ated with the expressivity of the model, which is the capacity to effectively and discriminatively represent 
the palmprint image. Specifically, this chapter evaluates the Gabor filter banks by changing the number 
of Gabor orientations and conducts the performance analysis on the CUHKSZ palmprint dataset. As is 
shown in Table 4, when the Gabor orientations is 6, CompCode achieved the lowest EER. Note that the 
range of translation is fixed as 3 and the rotation angle is set to be 0 during matching.

Table 4. Palmprint verification EER (%)  obtained by CompCode using different number of orientations

Filter Bank Orientations (k) 4 6 8

Palmprint 0.1746 0.1616 0.1658
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Influence of template shift steps. The translation shift procedure during the matching stage means 
vertically and horizontally translating one feature template of the matching pair in the range of [−t, t] 
steps to calculate their similarity select the maximum similarity score as their final mathcing result. 
Thus, this parameter can affect the robustness against variations within intra-class palms. Table 5 il-
lustrates the performance of CompCode with different translation shift steps, the value varies from 1 to 
6. Here, one shift step of feature template means 3 pixels shift in the original ROI image. Hence, t = 6 
means the ROI will be shifted from -18 pixels to +18 pixels to search for the best overlap region of the 
two ROIs. As is shown in Table 5, the translation shift steps of 6 is preferred, CompCode achieved the 
lowest EER on CUHKSZ dataset. Note that the number of orientations in the Gabor filter bank is fixed 
as 6 and the rotation angle as 0.

Influence of template rotation angles. Based on the fact that in the touchless palmprint data acquisi-
tion, there is no panel for palms to fix the height and direction, so the palm placement may show different 
heights and angles. Accordingly, this section mainly focuses on the influence of template rotation angles 
and conducts two series of experiments.

The first series is CompCode with rotations [−2o, 0o, +2o] and [−3o, 0o, +3o]. Rotation range of [−2o, 
0o, +2o] means the Gabor template of a test palm image will be rotated at a fixed angle of −2o and +2o to 
obtain two rotated templates, and the template not rotated is also preserved. In the matching stage, these 
three templates will be matched with multiple features of each palm in the database, the best matching 
score is regarded as the matching result. The scheme of [−3o, 0o, +3o] is likewise. Table 6 demonstrates 
the CompCode performance with different rotation angles, which shows that CompCode without rota-
tions obtained the best EER result.

The second series is CompCode without rotation and with fixed rotation angles, i.e., [−3o, 0o, +3o] 
under different shift steps. As shown in Table 7, it is obvious that CompCode without rotation achieves 
the best EER. The reason for the above phenomenon is that the ROI localization algorithm has already 
coarsely aligned the palm rotations. Therefore, template rotation may increase the similarity between 
inter-class features, bring a negative influence on the final recognition accuracy. In this experiment, the 
number of Gabor filter orientations is fixed to be 6.

Table 5. Parameter analysis (report EER (%) )  of translation shift steps based on CompCode

Shift Steps t 1 2 3 4 5 6

Palmprint 1.7292 0.4024 0.1616 0.1023 0.0759 0.0706

Table 6. EER (%)  obtained by CompCode using different rotation ranges

Rotation Angles 0◦ [−2◦, 0◦, 2◦] [−3◦, 0◦, +3◦]

Palmprint 0.0759 0.0962 0.1447



Touchless﻿Palmprint﻿Recognition﻿and﻿Its﻿Evaluation﻿on﻿a﻿Large-Scale﻿Dataset

12

Time consumption analysis. Based on previous experimental results, the template rotation angle 
has no obvious contribution to the recognition performance. Thus, this section only conducts detailed 
experiments by changing the numbers of Gabor filter orientations (k) and translation shift steps (t) in 
this experiment. The code is implemented in Matlab using 72 parallel threads.

Table 8 shows the EER obtained using the CompCode with different shift steps and the number 
of Gabor filter orientations on the CUHKSZ dataset. As can be seen, the CompCode obtains the best 
performance when taking translation shift steps of 5 (corresponding to 15 pixels in the 128×128 ROI 
image) and Gabor filter banks with 6 orientations. And also, with the increasing translation shift steps 
the performance gets better. When the translation shift steps reaches 5, the performance remains stable 
when the number of the Gabor filter orientations is 6; then, increasing the number of Gabor filter banks 
results in no better performance.

Because spatial information of feature map is consistent with the original image, CompCode is sensi-
tive to variations within intra-palms such as translations and rotations. Thus, the translation operation, 
which allows brute force matching within a local range, can mitigate the misalignment to some extent. 
This capacity is demonstrated by the performance gap between results with and without template trans-
lation procedure for matching.

Moreover, the experiment, which uses three samples of each palm for training and the rest for testing, 
produces about 0.34 billion sample pairs during the matching stage. With the translation shift steps t, it 
can generate (2t +1)2 − 1 times more matching per sample pair, strongly affecting the time consumption 
of palmprint recognition. The time consumption of the matching stage under different translation shift 
steps is listed in the final column of Table 8. As can be seen, the time consumption increased consider-
ably as the increasing of translation shift steps. Actually, compared to the performance obtained with 
translation shift steps of 5, the performance of translation steps 6 increased slightly while the running 

Table 7. The performance of CompCode (report EER (%) )  with different translation shift steps and 
rotation angles

Steps (t)
Angles (r) 1 2 3

0◦ 1.7292 0.4024 0.1616

[−3◦, 0◦, +3◦] 1.7461 0.4498 0.2082

Table 8. EER (%)  and total matching time consumption (hour)  obtained by CompCode using differ-
ent numbers of Gabor filter orientations (k)  and translation steps (t)  on the entire CUHKSZ touchless 
palmprint dataset

Orientations k 
Steps t 4 6 8 Matching Time (h)

1 1.9208 1.7292 1.6665 5.2

2 0.4445 0.4024 0.3934 11.3

3 0.1746 0.1616 0.1658 26.0

4 0.1094 0.1023 0.0988 33.1

5 0.0899 0.0759 0.0759 54.0
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time increases sharply. Thus, Table 8 does not present the results of steps 6. With a comprehensive 
consideration of both the recognition performance and time consumption, the Gabor filter bank with 6 
orientations, translation steps 5, and matching without rotations, are the optimal hyper-parameters of 
the CompCode for palmprint recognition on the CUHKSZ database.

Comparison and Analysis of Different Methods

In this experiment, a comparison of recognition methods is conducted between CompCode and some 
widely used palmprint methods including CR_CompCode (Zhang et al., 2017), RLOC (Jia et al., 
2008), OLOF (Sun et al., 2005), LLDP with Gabor filters (LLDP-G) (Luo et al., 2016), and LLDP with 
MFRAT (LLDP-M) (Luo et al., 2016). Codes of these methods are provided by their authors. Consider-
ing the experimental time consumption on large-scale datasets, this chapter modifies the original code 
in a multithreading manner to reduce the running time in an acceptable scope. For a fair comparison, 
the parameters of these methods are in the default settings as their original paper. Different from the 
pixel-to-pixel strategy used in other methods, the palmprint matching strategy in RLOC is based on the 
pixel-to-area comparison. Specifically, in this experiment, RLOC uses the matching strategy of pixel-
to-cross-shaped area comparison which is proven better than the pixel-to-small-square area comparison 
(Jia et al., 2008). Note that all the methods are conducted on the CUHKSZ palmprint dataset (only the 
palmprint modal is used), the results are shown in Table 9.

Multi-Biometric Performance Comparison

To date, face and fingerprint biometrics recognition are the most widely used biometric techniques. 
To demonstrate the advantages of palmprint recognition, the CUHKSZ face dataset and the CUHKSZ 
fingerprint dataset are used to perform verification experiments.

Considering the over-fitting issues existing in deep learning methods, this experiment only chooses 
the conventional methods to test the recognition capability of different biometrics. Further, the param-
eters of each algorithm have been optimized to avoid the performance bias caused by improper algo-
rithm parameters. The EERs are shown in Table 10. As can be seen, palmprint recognition achieved the 
lowest EER. Particularly, EER of 0.076% for palmprint recognition, while EER of 0.037% for bimodal 
(palmprint and palm vein) recognition. Note that for palmprint verification, the following parameters 
(k=6, t=5, r=0) were used with acceptable time consumption.

Table 9. Comparison of different methods on the CUHKSZ palmprint dataset

Recognition Methods EER (%)

CompCode 0.0759

CR_CompCode 0.8062

LLDP-G 0.2875

LLDP-M 0.7642

OLOF 2.9361

RLOC 3.7150
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FUTURE RESEARCH DIRECTIONS

Nowadays, issues and challenges raised in palmprint image sensing and recognition have become hot 
topics in TLPR. The large-scale palmprint dataset acquired in unconstrained environments intrinsically 
contain these factors and will offer unparalleled opportunities to researchers in the biometrics community. 
Accordingly, the future research directions of palmprint recognition are as follows:

• Unsupervised model: At present, the CNN-based palmprint feature extraction networks will be af-
fected by the number of categories in the classification layer. Therefore, the generalization ability 
is limited. How to avoid interference from the classification loss to the feature encoding network 
module during training and how to design an unsupervised palmprint texture representation model 
are the focuses of future research;

• Palmprint IQA: Touchless palmprint IQA is the foundation of palmprint recognition in real-world 
applications. During the palmprint collection process, problems such as defocus blur, motion blur, 
and abnormal brightness may occur due to the change in the users’ palm postures and positions. 
Palmprint quality indicators, such as brightness, sharpness, and illumination uniformity, can be 
used to further improve the accuracy and robustness of the palmprint recognition system;

• End-to-end model: How to integrate the current ROI keypoint detection, feature extraction, and 
recognition methods to achieve end-to-end palmprint recognition neural networks is one of the 
promising research directions.

CONCLUSION

During the last two decades, great progress has been made in touchless palmprint recognition. This 
chapter first elaborates on the basic definitions and challenges of touchless palmprint recognition. Then, 
this chapter introduces a subject-aligned large-scale multi-biometric dataset (CUHKSZ), which contains 
a considerable large-scale touchless palmprint subset, to thoroughly test the generalization ability of the 
touchless palmprint recognition technique. The experimental results on CUHKSZ show that parameter 
optimization brings enhanced performance and is considerably important to the final EER. To our best 
knowledge, no works on parameter optimization of CompCode on large-scale databases has been re-
ported. The performance-changing trends can provide references for optimizations of other methods on 
large-scale datasets. Finally, to avoid the bias caused by a single algorithm, the performances of various 
palmprint recognition methods are compared. In addition, the multi-biometric experiment performed on 

Table 10. Performance comparison of palmprint, face, and fingerprint recognition

CUHKSZ Dataset Modal Type No. of 
Classes

No. of 
Images Methods EER (%)

Palmprint (touchless)

Palmprint 20,000 120,000 CompCode 0.076

Palm vein 20,000 120,000 CompCode 0.279

Palmprint + Palm vein 20,000 120,000 Score Fusion 0.037

Face
Regular Face 4,000 8,000 HOG 2.075

Large Deflection Angle 6,000 12,000 LBPH 4.026

Fingerprint Thumb 20,000 100,000 Cappeli 1.718
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CUHKSZ palmprint, face, and fingerprint datasets demonstrates the advantage of touchless palmprint 
recognition in accuracy and provides useful guidance for civil applications.
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KEY TERMS AND DEFINITIONS

Bimodal Palmprint Recognition: The recognition is based on images captured under two different 
ranges of light spectrum such as the visible and infrared light spectrum.

Multispectral Palmprint Recognition: The recognition is based on multispectral palmprint images 
which are captured by illuminating the palm with light sources of different spectral ranges.

Palm Vein Recognition: The process to identify a person using the palm vein textures which are 
formed by the subcutaneous veins of the palm.
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Palmprint Image Alignment: For two palmprint images captured from the same palm, the process 
of mapping the probe image to the view plane of the reference image according to the projection map-
ping relationship established through the set of corresponding points detected from the two palmprint 
images. Generally, palmprint alignment is used to further reduce variations within intra-class samples.

Palmprint Image Preprocessing: A series of processing performed on a palmprint image to obtain 
an image suitable for feature extraction. Generally, it includes palm region segmentation, palm keypoint 
localization, ROI localization, normalization, palmprint image quality assessment, and enhancement.

Palmprint Keypoint Localization: The process of determining the locations of the keypoints of a 
palm in an image, in which the keypoints are a sequence of points in a palmprint image that is physically 
and geometrically distinctive for palmprint ROI localization.

Palmprint Principal Lines: The deepest and thickest lines on the palm, also known as the distal, 
radial, and proximal creases or the heart, head, and life lines of the palm.

Palmprint Region of Interest (ROI): The palm area, mostly the center area of the palm side, is used 
to extract palmprint features and perform identity recognition.

Palmprint Template: A structural data unit recording the extracted palmprint features and related 
auxiliary information, such as the algorithm used for feature extraction and the quality indicator of the 
input palmprint image.

ROI Localization: The process of determining the location of the palmprint ROI. Palmprint ROI 
localization, as a geometric normalization operation, is performed to reduce translation, rotation, and 
scale variations between different palmprint images.


